Real-Time Imaging of SPION Modified Stem Cells
نویسندگان
چکیده
منابع مشابه
Simulation of a Neutron Detector for Real Time Imaging Applications
Monte Carlo Method is used to simulate a double layer gadolinium-amorphous silicon thermal neutron detector. The detector fabricated in pixel array configuration has various applications including neutron imaging. According to the simulation results, a detector consisting of a gadolinium (Gd) film with thickness of 2-4 ~m, sandwiched properly with two layers of sufficiently thick (-30 ?µm) hydr...
متن کاملCellular Uptake of Plain and SPION-Modified Microbubbles for Potential Use in Molecular Imaging
Introduction Both diagnostic ultrasound (US) and magnetic resonance imaging (MRI) accuracy can be improved by using contrast enhancement. For US gas-filled microbubbles (MBs) or silica nanoparticles (SiNPs), and for MRI superparamagnetic or paramagnetic agents, contribute to this. However, interactions of MBs with the vascular wall and cells are not fully known for all contrast media. Methods...
متن کاملReal-time in vivo imaging of stem cells following transgenesis by transposition.
Previous studies have identified Sleeping Beauty transposons as efficient vectors for nonviral gene delivery in mammalian cells. However, studies demonstrating the usefulness of transposons as gene delivery vehicles into adult stem cells are lacking. Multipotent adult progenitor cells (MAPC) are nonhematopoietic stem cells with the capacity to form most, if not all, cell types of the body and a...
متن کاملImaging transplanted stem cells in real time using an MRI dual-contrast method
Stem cell therapies are currently being investigated for the repair of brain injuries. Although exogenous stem cell labelling with superparamagnetic iron oxide nanoparticles (SPIONs) prior to transplantation provides a means to noninvasively monitor stem cell transplantation by magnetic resonance imaging (MRI), monitoring cell death is still a challenge. Here, we investigate the feasibility of ...
متن کاملMicrofluidic Devices for Real-time Infrared Imaging of Living Cells
The detection of biological events in living systems is a topic that stands at the edge of Physics, Biology, and Engineering. In the last years, the teams of Laboratory for Interdisciplinary Lithography (LILIT_IOM-CNR, Trieste, Italy) and of the Synchrotron Infrared Source for Spectroscopy and Imaging (SISSI@Elettra Synchrotron Light laboratory in Trieste, Italy) focused their efforts into the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biophysical Journal
سال: 2013
ISSN: 0006-3495
DOI: 10.1016/j.bpj.2012.11.3723